Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization
نویسندگان
چکیده
The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with 128 p processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for 128 p that makes our application highly scalable. Keywords—Deterministic simulations, low-dimensional magnets, modeling of complex systems, parallelization.
منابع مشابه
Injection Optimization for Heavy Duty Diesel Engine in Order to Find High Efficiency and Low NOx Engine Concept by Means of Quasi Dimensional Multi-Zone Spray Modeling
The purpose of this study is to investigate the effect of injection parameters on a heavy duty diesel engine performance and emission characteristics. In order to analyze the injection and spray characteristics of diesel fuel with employing high-pressure common-rail injection system, the injection characteristics such as injection delay, injection duration, injection rate, number of nozzle hole...
متن کاملMPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling
Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...
متن کاملOPTIMAL HYBRID BASE ISOLATION AND MR DAMPER
In this paper, optimal design of hybrid low damping base isolation and magnetorheological (MR) damper has been studied. Optimal hybrid base isolation system has been designed to minimize the maximum base drift of low damping base isolation system where for solving the optimization problem, genetic algorithm (GA) has been used. In design procedure the maximum acceleration of the structure has ...
متن کاملThree-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell
In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters, complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...
متن کاملModeling of Pressure Dependence of Interfacial Tension Behaviors of Supercritical CO2 + Crude Oil Systems Using a Basic Parachor Expression
Parachor based expressions (basic and mechanistic) are often used to model the experimentally observed pressure dependence of interfacial tension (IFT) behaviors of complex supercritical carbon dioxide (sc-CO2) and crude oil mixtures at elevated temperatures. However, such modeling requires various input data (e.g. compositions and densities of the equilibrium liquid and vapor phases, and molec...
متن کامل